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The paper discusses coherent control of charge and spin states of a biexciton system in a quantum dot via
coherent two-photon transitions. Rabi oscillations between the ground state of a quantum dot and the biexciton
state, as well as oscillations between the two single-exciton states induced by laser pulses with different
circular or linear polarizations are studied. The effect of phonon-induced decoherence on these processes is
described. System properties and driving conditions that lead to optimal coherent control are identified. It is
shown that proper optimization allows one to control the two-qubit biexciton system via two-photon transitions
with a high fidelity.
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I. INTRODUCTION

Developing efficient methods for optical control of the
quantum states of carriers confined in semiconductor nano-
structures is not only important from a purely scientific point
of view but also vital for emerging technologies. Quantum
dots �QDs� have been proposed as an efficient source of on-
demand entangled photons.1 This application was experi-
mentally realized using optically driven QD systems.2 Dem-
onstration of Rabi oscillations of the exciton occupation3 and
conditional control of the biexciton system �two confined
excitons with opposite polarizations�4 demonstrate the feasi-
bility of coherent optical control of charge �orbital� degrees
of freedom. Although this suggests that implementing quan-
tum bits on such charge states might be possible, the rela-
tively short lifetime of charge excitations considerably re-
stricts the feasibility of this solution. Instead, spin degrees of
freedom, which are stable over much longer time scales, are
believed to be much more promising.5 Here, again, optical
methods allow one to control the system on picosecond time
scales, that is, much faster than by electron-spin resonance or
by electric gating using exchange interaction. A whole range
of theoretical proposals for such optical spin control
schemes6–9 was recently followed by an experimental
demonstration.10 It has also been shown that entanglement
generating two-qubit gates can be performed optically on
confined spin qubits via various all-optical schemes.11,12

While the atomiclike discrete properties of optical transi-
tions in QDs allow one, in principle, to implement a wide
variety of quantum-optical schemes, the solid-state nature of
the system introduces various decoherence channels that can-
not be ignored when designing optical control schemes. One
of the most important sources of dephasing in coherently
driven systems is the coupling to lattice degrees of freedom
�phonons�13–15 which imposes additional constraints on the
implementation of optical control protocols.16 Typically, due
to the dynamical character of the lattice response and to the
highly structured nature of the lattice reservoir, the require-
ment of avoiding strong lattice response restricts the param-
eters of the control fields to a narrow range which can only
be determined by careful modeling of the control procedure
in the presence of decoherence.17,18

In order to achieve fast control with high fidelity and to
provide enough flexibility for optimizing against decoher-
ence processes, alternative control schemes are sought for.
This paper is devoted to a specific class of such schemes:
quantum control of a four-level biexciton system using co-
herent two-photon transitions. The direct motivation for the
present study is recent experiments in which coherent two-
photon transitions between the ground state and the biexciton
state have been demonstrated19 and full pulse-area-dependent
two-photon Rabi oscillations between these two states were
induced.20 Here, a complete theory of coherent two-photon
processes in a biexciton system in a QD will be presented.
Such processes provide an additional degree of control of the
biexciton, which can be viewed as the simplest semiconduc-
tor two-qubit system. They can be used to create entangle-
ment with a single laser pulse, which is a valuable alternative
to the schemes based on sequential transitions or two-color
control. From the spin-oriented point of view, some of the
transitions to be described here consist in a simultaneous flip
of the electron and hole spin. Both the coherent evolution in
an optically driven four-level system and the effect of
carrier-phonon coupling will be discussed. It will be shown
that QDs with various spectral properties �positive vs nega-
tive biexciton shifts� and under various driving conditions
�sign and value of the frequency detuning of the laser field�
are optimal for different control schemes.

The paper is organized as follows. Section II introduces
the model of the system under study. Next, in Sec. III, the
perfect system evolution �without dephasing� is discussed;
first for linearly polarized laser pulses �Sec. III A�, then for
circularly polarized ones �Sec. III B�. Section IV outlines the
numerical and analytical �perturbative� methods used for the
study of the phonon impact on the system evolution. In Sec.
V, the system evolution including phonon-induced dephasing
is discussed for various system configurations. Section VI
concludes the paper with summary and final remarks. In ad-
dition, the influence of the exchange splitting of the single-
exciton states is discussed in the Appendix.

II. SYSTEM

The system under consideration is composed of a single
QD coupled to a laser beam which may have either linear or
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circular polarization. According to the selection rules, a cir-
cularly right-polarized beam can only induce transitions from
the ground state �g� to the right circularly polarized exciton
state ��+� and from the left circularly polarized exciton state
��−� to the biexciton state �XX� �blue arrows labeled “�+” in
Fig. 1�. The other two transitions �red arrows labeled “�−” in
Fig. 1� are allowed for a left-polarized beam. A linearly po-
larized beam is a superposition of both circularly polarized
components and couples both exciton states with fixed circu-
lar polarizations ���+� , ��−�� to the ground and biexciton
states ��g� , �XX��. In this way, the system is modeled by a
four-level “diamond” structure, which is a generalization of
“� systems” and “V systems” studied in quantum optics.

It is assumed that the frequency of the beam is detuned
from all the single-photon transitions, as shown in Fig. 1. For
pulses of picosecond durations, the excited states of confined
carriers are irrelevant and may be disregarded. In most of the
discussion, we will also neglect the exchange interaction that
couples the two circularly polarized exciton states and turns
them into a weakly split linearly polarized doublet.21–23 The
energy of this coupling is usually below 100 �eV and can
be reduced or even cancelled by applying external fields24,25

or by special treatment �annealing� of the samples.26,27 In
most cases, the small fine-structure splitting does not affect
the system dynamics on the picosecond time scales relevant
for the present discussion. However, it becomes important if
the single-exciton states are coupled by long �spectrally se-
lective� pulses, so that the fine structure becomes spectrally
resolved. This effect is discussed in the Appendix. The ef-
fects of finite exciton lifetime �of the order of 1 ns� will also
be disregarded.

Thus, the system is described by the Hamiltonian

H̃ = H̃XX + H̃las + Hph + Hint.

Here, the first term describes the four-level biexciton system,

H̃XX = E���+���+� + ��−���−�� + �2E + EB��XX��XX� ,

where E is the energy of the single-exciton states and EB is
the biexciton shift �assumed negative in the binding case, as
in Fig. 1�. The second term accounts for the coupling be-

tween the carrier states and the laser beam. For a linear po-
larization it has the form

H̃las
�lin� = f�t�cos��t����g� + �XX���X� + H.c.� ,

while for a circular �say, �+� polarization it reads

H̃las
�circ� = f�t�cos��t���g���+� + ��−��XX� + H.c.� ,

where f�t� is the envelope of the laser-pulse amplitude
�which is assumed to be real�, � is the laser frequency, and
we define “linearly polarized” exciton states �X� , �Y� related
to the circularly polarized states �i.e., angular-momentum
eigenstates� by ����= ��X�� i�Y�� /�2. The third term is the
free phonon Hamiltonian

Hph = 	
k

��kbk
†bk,

where bk
† ,bk are creation and annihilation operators for a

phonon with a wave vector k and �k is the corresponding
frequency. The last term describes carrier-phonon interaction

Hint = ��X��X� + �Y��Y� + 2�XX��XX��	
k

gk
��bk + b−k

† � ,

where the coupling constants gk=g−k
� account for the

deformation-potential coupling between the longitudinal-
acoustic phonons and a confined neutral exciton. This cou-
pling dominates over the piezoelectric coupling to the acous-
tic phonon branches if the electron and hole wave functions
overlap strongly.28 On the other hand, coupling to optical
phonons is not important in the present study since both the
typical frequencies of the system evolution and the magni-
tudes of the detunings are much lower than the frequencies
of the optical phonons.

For the pulse envelope, a Gaussian shape will be as-
sumed,

f�t� =
�	

�2
�0

e−�1/2��t/�0�2
,

where �0 is a parameter defining the pulse duration and

	 = 

−�

�

dt
f�t�
�

is the pulse area. Assuming Gaussian wave functions and
neglecting the small correction resulting from the different
localization widths of electrons and holes, the coupling con-
stants are given by29

gk = ��e − �h�� �k

2vc
e−l2�kx

2+ky
2�/4−lz

2kz
2/4,

where �e,h are the deformation-potential constants for elec-
trons and holes,  is the crystal density, v is the normaliza-
tion volume for phonon modes, c is the speed of sound, and
l , lz are the confinement lengths in the QD plane and along
the growth direction. The values used in the calculations are
�e−�h=9 eV, =5350 kg /m3, c=5150 m /s, l=4.5 nm,
and lz=2 nm.

The Hamiltonian is transformed to the “rotating frame” by
the canonical transformation defined by the unitary operator

FIG. 1. �Color online� The energy-level structure of a confined
biexciton and the schematic presentation of the optical couplings
between the states for �a� the biexciton Rabi oscillations and for �b�
the exciton spin flip.
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U = ei�t���+���+�+��−���−�+2�XX��XX��−i��/��tI,

where �=��−E is the detuning between the laser frequency
and the single-exciton transition energy and I is the identity
operator. The transformed Hamiltonian is

H = UHU† + i�
dU

dt
U† = HXX + Hlas + Hph + Hint,

where

HXX = ��g��g� + �EB − ���XX��XX� , �1�

Hlas
�lin� = f�t�cos��t���e−i�t�g� + ei�t�XX���X� + H.c.� , �2�

Hlas
�circ� = f�t�cos��t��e−i�t��g���+� + ��−��XX�� + H.c.� ,

�3�

and the contributions Hph and Hint remain unchanged.
Since the dynamics induced by the laser pulse is slow

compared to the frequency of the optical field, it is possible
to treat the system in the rotating wave approximation,30 as is
commonly done in the description of picosecond dynamics
induced by laser fields in the optical or near-infrared range
�that is, with femtosecond oscillation periods�. One neglects
in Eqs. �2� and �3� the very quickly oscillating terms contain-
ing exp��2i�t� which average to null over a typical time
scale characterizing the evolution of the system state. This
leads to the final formulas for the exciton-laser coupling
Hamiltonians

Hlas
�lin� =

1

2
f�t����g� + �XX���X� + H.c.� , �4�

and

Hlas
�circ� =

1

2
f�t���g���+� + ��−��XX� + H.c.� . �5�

III. UNPERTURBED EVOLUTION

In this section, various schemes of two-photon coherent
control of a biexciton system are discussed on a purely
quantum-optical level, that is, without phonon-induced
dephasing. The optically induced transitions depend on the
polarization of the laser pulse. Sections III A and III B are
devoted to the evolution driven by linearly and circularly
polarized laser pulses, respectively.

A. Linear polarization

Let us start with the unperturbed evolution of the system
generated by the Hamiltonian HXX+Hlas

�lin� �Eqs. �1� and �4��.
Consider the diagram of instantaneous eigenstates of the rel-
evant three-level Hamiltonian �excluding the decoupled state
�Y�� as a function of the pulse amplitude f . First, let us focus
on the special case of �=EB /2 �Fig. 2�a��. Then

HXX =
�

2
�� + ��+ � + �− ��− �� ,

where �� �= ��g�� �XX�� /�2. The driving field �Eq. �4�� does
not couple the state �−� to the other states; hence, this state is

invariant under HXX+Hlas
�lin�. Another, nontrivial invariant

subspace is spanned by the states �X� and �+ �. The instanta-
neous eigenvalues along the two spectral branches belonging
to this subspace are

���t� =
�

2
�1 � �1 + 2�f�t�/��2� , �6�

where �− corresponds to the branch originating from the
state �X� �upper branch, blue line in Fig. 2�a��. It is clear that
the two branches are separated from each other by at least
���.

If the amplitude f of the laser pulse changes slowly
enough in time the evolution generated by HXX may be
found using the adiabatic theorem.20,31 In such case, the
states �X� and �+ � undergo an adiabatic evolution, with f�t�
playing the role of a slowly varying parameter. At the time t1,
after the pulse has been switched off, the initial state is re-
stored with the additional dynamical phase

�� = −
1

�



t0

t1

dt���t� , �7�

where t0 is the initial time �before the pulse was switched
on�.

Assume now that the system is initially prepared in the
state

��+� =
�X� + i�Y�

�2
.

The state �Y� is decoupled from the laser beam and does not
evolve. As a result, the state ��+� undergoes the transforma-
tion

��+� →
ei�−�X� + i�Y�

�2
= ei�−/2cos

�−

2
��+� + i sin

�−

2
��−�� .

The phase �− may be arbitrarily large. Moreover, for a fixed
pulse shape, it is a monotonous function of the pulse inten-
sity. Thus, by varying the pulse amplitude, the exciton can be
coherently rotated between the two polarization states ��+�
and ��−�. The resulting occupation of the state ��−�, obtained
from numerical solution of the quantum evolution equation,
is shown in Fig. 3�a� �red solid line� as a function of the
pulse area 	.
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B
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FIG. 2. �Color online� The spectral branches representing the
instantaneous eigenstates of the unperturbed Hamiltonian HXX

+Hlas
�lin� as functions of the pulse amplitude f �the adiabatic param-

eter� for �a� �=EB /2 and for �b� �=EB /3. In both cases, EB�0.
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In the same way, since the state �−� evolves only trivially,
if the system is initially in the state

�g� =
� + � + �− �

�2
,

it will undergo the transformation

�g� → ei��+−��t1−t0�/��/2cos
�

2
�g� + i sin

�

2
�XX�� ,

where �=�++��t1− t0� /2�. Note that �+→� when the laser
pulse is switched off, so that � is in fact independent of the
choice of the initial and final times. Thus, when the pulse
amplitude is increased the system oscillates between the
ground and biexciton states, much like in the usual pulse-
area-dependent Rabi oscillations between the ground and
single-exciton states, induced by a resonant circularly polar-
ized beam.3 The biexciton oscillations are plotted in Fig. 3�b�
�red solid line�. Such oscillations were indeed observed in an
experiment.20

In spite of some qualitative similarity to the Rabi oscilla-
tions in a two-level system, described by the universal func-
tion sin2�	 /2�, one can clearly see essential differences. The
two-photon oscillations are not strictly periodic, especially
for weak pulses, when the transition probability develops
very slowly. In fact, for weak pulses the occupation of the
other state grows as 	4� I2, where I is the pulse intensity, as
expected for a two-photon process �see Ref. 20�. Moreover,
it is clear from Eq. �6� that the rotation angle � is a nonlinear
functional of the pulse envelope. Hence, contrary to the usual
Rabi oscillations, no universal area theorem exists for the
final occupations.

In the general case ��EB /2, there are no invariant states
�apart from �Y�� and all three states �g� , �X� , �XX� give rise to
three nondegenerate spectral branches �Fig. 2�b��. Now, in
the adiabatic limit, the state �X� evolves as previously, except
for a different value of the corresponding adiabatic eigen-
value, which now cannot be given in a simple analytical
form. Thus, the exciton spin-flip effect will take place also in
this case, as shown in Fig. 3�a� �green dashed and blue dotted
lines�.

On the other hand, since the states �g� , �XX� now belong
to nondegenerate branches, an adiabatic evolution starting
from any of these states will end up in the same state up to
an irrelevant global phase. Therefore, the two-photon Rabi
oscillations are suppressed when the driving field is detuned
from �=EB /2, as shown in Fig. 3�b� �green dashed and blue
dotted lines�. In fact, the symmetric detuning condition is
equivalent to the two-photon resonance between the ground
and biexciton states. If the two-photon resonance condition
�=E /2 is not satisfied, the transition from the ground to
biexciton state is forbidden and the corresponding Rabi os-
cillations are precluded.

On the contrary, the polarization flip is always resonant
and the detuning becomes a tunable parameter. As will be
shown in Sec. V, this additional freedom of control may be
useful for optimizing experimental parameters against
phonon-induced dephasing.

B. Circular polarization

In the case of a �+-polarized beam, the unperturbed sys-
tem evolution is generated by the Hamiltonian HXX+Hlas

�circ�

which has two invariant two-dimensional subspaces spanned,
respectively, by the states �g� , ��+� and �XX� , ��−�. In the
adiabatic limit, each of these four states follows its own
branch of instantaneous eigenstates and is restored after the
laser is switched off up to a phase factor. Like in the previ-
ously discussed cases, these phase factors can result in a
nontrivial evolution if one starts with a system prepared in a
superposition of the states. For definiteness, let us choose the
initial state

�X� =
��+� + ��−�

�2
.

The instantaneous eigenvalues corresponding to the two
branches departing from ��+� and ��−� are

�+ = �
1 − �1 + �f�t�/��2

2
, �8a�

�− = �EB − ��
1 − �1 + �f�t�/�EB − ���2

2
. �8b�

The final state resulting from the adiabatic evolution is then

��� = ei��++�−/2�cos
�+ − �−

2
�X� − sin

�+ − �−

2
�Y�� ,

where �� is defined by Eq. �7� but with �� defined in Eqs.
�8a� and �8b�. Thus, the polarization of the exciton state can
be rotated as long as �+−�−�0. This condition is clearly not
satisfied at the biexciton resonance �=EB /2; but as long as
the laser beam is detuned from this resonance, one expects
polarization rotation to appear. This is confirmed by the nu-
merical integration of the evolution equation, as shown in
Fig. 4. Note that the final state is always linearly polarized at
an angle of ��+−�−� /2 to the initial polarization.
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FIG. 3. �Color online� �a� Two-photon polarization flip. The
occupation of the state ��−� as a function of the pulse area for �
=EB /2=−2 meV �red solid line�, �=EB /3 �green dashed line�, and
�=EB /6 �blue dotted line�. �b� Two-photon Rabi oscillations �Ref.
20�. The occupation of the biexciton state as a function of the pulse
area for �=EB /2=−2 �red solid line�, −1.9 �green dashed line�, and
−1.7 meV �blue dotted line�. In both figures, EB=−4 meV and
�0=5 ps.
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IV. PHONON EFFECTS: THE METHOD

This section presents the general theoretical framework
for calculating the effect of the phonon-induced decoherence
on the two-photon transitions described above. This will be
followed by the results of numerical simulations discussed in
Sec. V.

It is convenient to perform a unitary transformation to the
phonon-dressed exciton states,32

W = �g��g� + ��X��X� + �Y��Y��W + �XX��XX�W2,

where

W = exp�− 	
k

gk
�

��k
�bk − b−k

† �� .

Note that this transformation conserves the occupations of
the basis states. Working in the dressed basis physically cor-
responds to the assumption that the initial state was prepared
some time �a few picoseconds� before the operation and it is
therefore surrounded by the polaronlike coherent phonon
field. Upon this transformation and expansion to the leading
order in the coupling constants, the Hamiltonian may be
written as H�=WHW†=H0+V, where the first component in
the two cases of linear and circular beam polarization is,
respectively,

H0
�lin� = ��g��g� + Hph + �EB − ���XX��XX�

+
w

2
f�t����g� + �XX���X� + H.c.�

and

H0
�circ� = ��g��g� + Hph + �EB − ���XX��XX�

+
w

2
f�t���g���+� + ��−��XX� + H.c.� ,

while the second term, describing the interaction with the
phonon reservoir, can be written as V=S�lin/circ� � R, where

S�lin� = −
i

�2
f�t��− ��X� + H.c.,

S�circ� = −
i

�2
f�t��g���+� + ��−��XX� + H.c.,

and

R = i	
k

gk
�

��k
�bk − b−k

† � .

Here,

w = 1 −
1

2	
k
� gk

��k
�2

�2nk + 1� ,

where nk is the phonon occupation number, which accounts
for the phonon-induced renormalization of the pulse ampli-
tude in the slow driving limit.15,33 We neglect the phonon-
induced energy shifts which are very small for acoustic
phonons.

The evolution of the reduced density matrix of the biex-
citon subsystem is found by numerically solving the time-
convolutionless �TCL� evolution equation34 for the density
matrix in the interaction picture with respect to H0,

̇�t� = − 

0

t

d� Trph�V�t�,�V���,�t� � ph�� , �9�

where V�t� is the interaction Hamiltonian V in the interaction
picture with respect to H0, ph is the phonon density matrix at
the thermal equilibrium, and Trph denotes the partial trace
over the phonon degrees of freedom.

The quantitative results presented in Sec. V will be ob-
tained from a numerical solution to Eq. �9�. However, much
additional insight can be gained from a perturbative approxi-
mation to this equation15,35,36 and from the spectral interpre-
tation it provides.14,37 Let us note that, as long as the pertur-
bation to the system evolution remains small, the reduced
density matrix in the interaction picture differs little from its
initial value. Hence, �t� on the right-hand side of Eq. �9�
may be replaced by its initial value 0= ��0���0�, where we
assume that the initial system state is pure and represented
by the state vector ��0�. Upon integration, Eq. �9� then yields

�t� = 0 − 

0

t

d�

0

�

d�� Trph�V���,�V����,0 � ph�� .

�10�

As a simple measure of the phonon-induced perturbation
we will use the probability that the system in its actual state
U0�t�U0

† will be found in the desired unperturbed state
U0��0� �here, U0 is the unperturbed evolution generated by
H0�. This is equal to F2= ��0��t���0�, where F is the fidelity
for the special case of a pure state.38 It is convenient to write
F2=1−�, where � is referred to as the error of a quantum
control operation. A physically transparent and meaningful
formula for � is obtained by defining the frequency-
dependent operator

Y��� =
1

�



0

t

d�S���ei��

and the phonon spectral density
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FIG. 4. �Color online� Two-photon rotation of the linear polar-
ization of an exciton state with a circularly polarized pulse. The
occupation of the �Y� state as a function of the pulse area for EB

=−4 meV and two values of �: �a� −3 and �b� +2 meV. Red solid
lines: �0=5 ps; green dashed lines: �0=10 ps. The initial state is
�X�.
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R��� =
�2

2




−�

�

dt�R�t�R�ei�t,

where S�t� and R�t� denote the operators in the interaction
picture with respect to H0. Then, one can write

� = 

−�

�

d�
R���
�2 	

l

Sl��� , �11�

where the spectral functions

Sl��� = ���l�Y�����0��2 �12�

can be identified with different decoherence channels and the
summation over l runs through all states ��l� orthogonal to
��0� �see Refs. 17 and 18 for details�.

V. PHONON EFFECTS: RESULTS

This section is devoted to the system evolution for differ-
ent structures of the biexciton spectrum and under various
driving conditions. In Secs. V A and V B we will study the
phonon impact on the biexciton Rabi oscillations and exciton
spin flip induced by a linearly polarized laser field in a sys-
tem with a negative biexciton shift �bound biexciton�. Sec-
tion V C contains a discussion of the same processes in a
system with antibound biexcitons �a positive biexciton shift�
and Sec. V D deals with phonon-induced dephasing in the
two-photon rotation of the linear exciton polarization in-
duced by a circularly polarized laser light.

A. Biexciton Rabi oscillations for bound biexcitons

Let us start the discussion with the case of biexciton os-
cillations in a system with a negative biexciton shift EB�0
�bound biexciton�. In this case, the laser beam is detuned
down from the transition to single-exciton states, as shown in
Fig. 1�a�. Therefore, one can expect that real phonon-assisted
transitions to these states will be suppressed at low enough
temperatures and the decoherence will be dominated by pure
dephasing like in the two-level case.14,15 Indeed, the oscilla-
tions presented in Fig. 5�a� show symmetric damping up to

temperatures of several kelvins. Only when ��kBT, the
phonon-assisted transition up to the single-exciton state �X�
is possible. As a result, the damping becomes much stronger
and biased toward lower biexciton occupations, which is ac-
companied by a growing single-exciton component, as
shown by the gray dash-dotted line in Fig. 5�a�, correspond-
ing to T=40 K.

The dynamical pure dephasing effect is related to the lat-
tice relaxation after a nonadiabatic �with respect to the lattice
response times� change in the charge state39 which correlates
the exciton system with the phonon reservoir, generating a
kind of “which path” information in the macroscopic
environment.40 Therefore, this kind of decoherence decreases
when the optically driven system evolution becomes
slower.36 This behavior is clearly visible in Fig. 5�b�.

The properties of the two contributions to dephasing �pure
dephasing and real transitions� may be conveniently studied
using the approximate perturbative formula �10�. Figure 6
shows the phonon spectral density R��� /�2 at T=4 K and
the two spectral functions Si���, with ��1�= �XX� and ��2�
= �X�, for two different pulse durations. In all these plots, the
nominal pulse area was tuned to achieve a complete Rabi
flop �the first maximum in Fig. 3�b��. One can see that the
first function is always positioned around the zero frequency
and its area �hence its overlap with R��� /�2� decreases for
slower driving. Therefore, this spectral function may be iden-
tified with the pure dephasing effect which decreases for
slower driving. The shape of this function does not change
considerably when the value of the biexciton shift EB is al-
tered. On the other hand, the second spectral function is lo-
cated in the negative frequency area around ����. This
allows us to relate this function to the real phonon-assisted
transitions to the single-exciton state �X�. Since the phonon
spectral density at large negative frequencies is small at low
temperatures, this decoherence channel is of minor impor-
tance in a system with a large enough biexciton shift and at
sufficiently low temperatures.

One notes in Fig. 6�b� that the shape of this spectral fea-
ture depends both on � and on �0. In order to study this
real transition process more quantitatively let us note that
for a localized spectral function S2���, the corresponding
contribution to the error may be approximated by �2
��A2R��� /�2, where
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FIG. 5. �Color online� The two-photon Rabi oscillations in the
presence of phonon-induced perturbation. �a� The dependence of
the damping on temperature for �0=5 ps: T=0 �red solid line�, 10
�green dashed line�, and 40 K �blue dotted line�. The gray dash-
dotted line shows the joint occupation of the single-exciton states
due to real transitions at T=40 K. �b� The dependence on the pulse
duration at T=4 K: �0=5 �red solid line�, 20 �green dashed line�,
and 40 ps �blue dotted line�.
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A2 = �

−�

�

d�S2��� .

The values of A2 as a function of the pulse duration �0 are
plotted in Fig. 7�a�. Again, for each �0, the pulse area is
adjusted in order to achieve a complete Rabi flop �the first
maximum of the biexciton occupation in Fig. 3�b��, so that
all the points correspond to the same transformation of the
system state. The overall probability of a transition to the
single-exciton state depends not only on the duration of the
process but also on the occupation of the single-exciton state
during the evolution. The latter decreases for longer and
weaker pulses. It turns out that the two effects compensate
each other almost exactly, leading to a nearly constant value
of A2 as �0 is varied. This means that the error resulting from
the real transition process is constant and, consequently, the
biexciton occupation should be achieved with a constant �in-
dependent of �0� accuracy as soon as the evolution is slow
enough for the pure dephasing to be negligible. This is con-
firmed by the numerical solution of the TCL equation �9�
presented in Fig. 7�b�. An additional property, clearly seen in
Fig. 7�a�, is that the value of A2 is nearly exactly proportional
to the detuning �, with just a small variation �a few percent�
for very short pulses.

B. Exciton spin flip

The spectral relations are different in the case of a two-
photon spin flip. Now, for a negative biexciton energy, the
laser frequency is always detuned up from at least one of the
transitions �Fig. 1�b��. For the detuning as in the previous
case, both transitions involve phonon emission and are there-
fore expected to cause much decoherence even at low tem-
peratures. Indeed, the oscillations of the exciton spin orien-
tation shown in Fig. 8�a� are damped in an asymmetric way
�biased toward lower occupations�, which is a signature of
occupation leakage out of the two-dimensional single-
exciton subspace. Correspondingly, single-exciton occupa-
tion becomes nonzero even at zero temperature. Moreover,
the degree of decoherence does not decrease with a growing
pulse duration �Fig. 8�b��, again showing that the Markovian
real transition processes are a non-negligible factor.

Interestingly, comparing Fig. 8 with Fig. 5 one can see
that the overall dephasing of the two-photon spin flip is

weaker than that of the biexciton oscillations, except for the
first maximum at low temperatures. The reason for this is
that the carrier-phonon interaction is insensitive to the spin
orientation; hence, there is no phonon response to the transi-
tion between the two single-exciton states. There could be
some perturbation resulting from the occupation of the other
two states during the evolution but in the case of symmetric
detuning �=EB /2, both these occupations are equal and the
average charge confined in the dot remains constant, which
precludes any phonon response that might lead to pure
dephasing. The spectral function related to the pure dephas-
ing process is again S1���, corresponding to ��1�= ��+� in Eq.
�12�. In the present case, this function remains null. This
changes slightly if the detunings from the ground and biex-
citon states are not equal and, consequently, there is a charge
variation during the evolution. However, as shown in Fig. 9,
even in this case the spectral function S1��� is many orders
of magnitude smaller than in the case of biexciton oscilla-
tions �compare Fig. 9�a� with Fig. 6�a��.

Phonon-assisted real transitions to the ground and biexci-
ton states are now described by two spectral functions S2���
and S3���, corresponding to ��2�= �g� and ��3�= �XX� in Eq.
�12�, respectively. As can be seen in Fig. 9�b�, these spectral
features shift according to the detuning between the laser
frequency and the relevant states.

The fact that the spin flip does not require the two-photon
resonance allows one to use the detuning � as a free param-
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eter to optimize the control conditions against the phonon-
induced real transitions. The most favorable choice is to set
��0 or ��EB �still assuming EB�0�. Then, one of the
transitions is detuned down from resonance and involves
phonon absorption which makes it ineffective at low enough
temperatures �see Fig. 10�a��. The other transition is detuned
up but the detuning can be chosen large enough to be
brought beyond the cutoff of the phonon spectral density, as
shown in Fig. 9�b� �dotted blue lines�. The simulations based
on the TCL Eq. �9�, presented in Fig. 10�b�, show that spin
flipping with fidelities of the order of 10−3 is possible under
such conditions. Note that this is achieved with a relatively
short pulse, so that the effect of the radiative decay during
the operation is also small �of the order of 1%�.

C. Antibound biexciton

Although the unperturbed evolution for EB�0 �antibound
biexciton� does not differ from that discussed above, this is
not true anymore for the actual system kinetics in the pres-
ence of phonons. The two-photon resonance condition �
=EB /2 that must be satisfied for the two-photon Rabi oscil-
lations to occur now means that the laser beam is detuned up
from the single-exciton transition. Unless this detuning is
large enough �which would require large positive biexciton
shifts� phonon-assisted transitions to the single-exciton states
may now take place, involving an emission of a phonon and
therefore contributing to dephasing even at low tempera-
tures. This can be seen in Fig. 11�a�, where the results of
numerical simulations are plotted at a few values of tempera-
ture.

On the contrary, the positive biexciton shift is favorable
for the spin-flip process since now both the transitions to the
ground and biexciton states are detuned down from the reso-
nance. Hence, phonon-assisted transitions may be expected
to contribute considerably only at high enough temperatures.
This is indeed confirmed by the numerical solution to the
TCL equation shown in Fig. 11�b�, where it can be clearly
seen that considerable dephasing occurs only when the tem-
perature increases to a few tens of kelvin.

One should note that the strong phonon-induced dephas-
ing that affects the exciton spin-flip process in the EB�0

case could be avoided by detuning the laser beam strongly
above the resonance, as discussed in Sec. V B. However,
strong dephasing of the biexciton Rabi oscillations in the
present case cannot be dealt with in the same way because of
the resonance condition required in this process.

D. Exciton polarization rotation

Let us now discuss the possibility of rotating the linear
polarization of an exciton state via a two-photon process in-
duced by a circularly polarized light. The energy diagram for
this process is the same as that relevant to the spin flip and is
shown in Fig. 1�b�. As discussed in Sec. III B, performing
this two-photon transfer requires detuning off the two-photon
biexciton resonance, i.e., ��EB /2. For a system with a
bound biexciton �EB�0�, this means that the detuning be-
tween the laser frequency and the transition to either the
ground state or the biexciton state decreases and enters the
range of high spectral density of the phonon reservoir. This
results in an increased contribution from phonon-assisted
transitions and, therefore, in considerable damping of the
polarization oscillations even at low temperatures, as shown
in Fig. 12�a�. Efficient polarization rotation is only possible
for large positive detunings �see the diagram in Fig. 10�a��
for the same reasons as discussed in Sec. V B. Again, the
quality of oscillations is reduced as soon as the temperature
becomes comparable with the detuning from the ground
state.
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FIG. 10. �Color online� �a� The diagram of energy levels and
laser frequencies in the case of ��0 and EB�0. �b� The two-
photon exciton spin oscillations in the presence of phonon-induced
perturbation for ��0 and EB�0 for �0=5 ps: T=0 �red solid
line�, 10 �green dashed line�, and 40 K �blue dotted line�.
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FIG. 11. �Color online� Dephasing of two-photon processes in a
system with EB�0 for �0=5 ps: �a� two-photon Rabi oscillations,
starting from the ground state and �b� two-photon spin flip, starting
from the ��+� state. Red solid line: T=4 K; green dashed line: T
=10 K; and blue dotted line: T=40 K.
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FIG. 12. �Color online� Dephasing of two-photon polarization
rotation for �0=5 ps. �a� EB=−4 meV; red solid line: �=
−3 meV, T=4 K; green dashed line: �=2 meV, T=4 K; and
blue dotted line: �=2 meV, T=40 K. �b� EB=4 meV, �
=3 meV; red solid line: T=4 K; green dashed line: T=10 K; and
blue dotted line: T=40 K.
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In a system with a positive biexciton shift EB�0,
phonon-induced transitions would require a phonon absorp-
tion and are therefore suppressed at low temperatures, as
shown in Fig. 12�b� �red solid and green dashed lines�. It
should be noted, however, that the system evolution is rela-
tively slow in this regime of operations since the detunings
are close to the two-photon resonance when the effect of the
laser field completely vanishes �see Sec. III B�. Therefore,
large pulse intensities are needed to achieve the desired
transformation of the system state. At higher temperatures
�blue dotted line in Fig. 12�b�� the phonon absorption pro-
cesses contribute considerably to the dephasing of the polar-
ization rotation process.

VI. CONCLUSION

Two-photon transitions driven by picosecond laser pulses
detuned from both exciton and biexciton resonances in a
quantum dot open the way to a rich variety of control
schemes in a biexciton system. Using a linearly polarized
laser field one can induce Rabi oscillations directly between
the ground and biexciton states and coherently flip the circu-
lar polarization of an exciton state. The former involves a
two-photon absorption or emission and requires exact two-
photon resonance. The latter can be interpreted as “photon
exchange” �absorption-emission� and can be induced in a
broad range of detunings. With a circularly polarized field,
one can induce a rotation of the linear polarization of an
exciton. This process takes place only off the two-photon
resonance. The physics beyond these two-photon processes
is highlighted by invoking the quantum-mechanical adiabatic
theorem. If the individual excitons are treated as separate
quantum subsystems �or qubits� then these two-photon con-
trol operations make it possible to prepare entangled states of
these subsystems with a single laser pulse.

These results, which are restricted to the ideal evolution,
already confirm once more that the biexciton system is an
interesting object of investigation from the point of view of
quantum optics. They show that couplings between all four
states forming the diamond structure of the biexciton levels
are essential for the system dynamics even if large detuning
precludes real transitions between these levels. This suggests
that models used for three-level atomic systems �V
systems�41 may be insufficient for a description of QD sys-
tems.

In a real semiconductor system, the evolution is strongly
affected by phonon-induced dephasing. In addition to the
pure dephasing process appearing in an optically driven two-
level exciton system, here we deal also with real phonon-
assisted transitions to the states which, in the ideal case,
should remain unoccupied. The effect of all the dephasing
channels depends on the control scheme under consideration
and on the energy-level structure of the biexciton system. For
negative biexciton shifts �bound biexcitons�, the phonon-
induced decoherence is relatively weak for two-photon Rabi
oscillations and becomes stronger for the polarization flip-
ping process. However, the additional freedom of detuning
allows one to optimize the driving conditions against these
decoherence effects also in the latter case, so that spin-flip

fidelities as high as 10−3 are achievable. QDs with a positive
biexciton shift are less suitable for these optical control
schemes. In contrast, they are favorable for the two-photon
rotation of the linear polarization. In this case, optimization
of the control conditions against phonon-induced dephasing
can be much more efficient in a QD with an antibound biex-
citon than in a QD with a bound biexciton.

The study of phonon-induced dephasing shows, in addi-
tion, that a two-photon transition between the two single-
exciton states can be performed via states with constant av-
erage occupation of the QD. This eliminates the phonon
response to the charge evolution and allows one to avoid the
resulting dephasing. With this respect, the single-pulse two-
photon control has a clear advantage over sequential transi-
tions.

Out of the various processes discussed here, one �the
biexciton oscillations� has already been observed
experimentally.20 The good agreement between the descrip-
tion based on the adiabatic theorem and the experimental
results shows that the theory captures the essentials of the
quantum evolution under actual laboratory conditions. The
other processes take place under similar experimental condi-
tions and therefore also seem to be experimentally feasible.
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APPENDIX: FINE-STRUCTURE SPLITTING

In almost all QDs, electron-hole exchange interaction
splits the single-exciton states into a linearly polarized dou-
blet of states �X� and �Y�. The magnitude �fs of this fine-
structure splitting can vary from several microelectron volts
to about 100 �eV. This splitting has no essential effect for
the biexciton Rabi oscillations, while speaking of the exciton
polarization flip makes sense only when the circularly

0

1

0π 10π 20π

Y
oc

cu
pa

tio
n

Pulse area(a)

0

1

0π 10π 20π

Y
oc

cu
pa

tio
n

Pulse area(b)

FIG. 13. �Color online� Rotation of the linear polarization of an
exciton state with a circularly polarized pulse with the fine-structure
splittings of �a� �=30 and �b� 100 �eV. The occupation of the �Y�
state as a function of the pulse area for EB=−4 meV and �=
−3 meV; pulse durations are 10 �red solid lines�, 20 �green dashed
lines�, and 40 ps �blue dotted lines�.
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polarized states can be considered well defined, that is, when
the total duration of the experiment does not exceed � /�fs,
which is of the order of 10–100 ps.

In this appendix the effect of the fine-structure splitting on
the linear polarization rotation is discussed. The two linearly
polarized states are well defined in the presence of this split-
ting. Due to the requirement for energy conservation, the
fidelity of this type of coherent control depends on the rela-
tion between the pulse length and the magnitude of the split-
ting.

The additional contribution to the Hamiltonian, describing
the fine-structure splitting, is

Hfs =
�fs

2
��X��X� − �Y��Y�� .

The results of simulations of the system dynamics �without
dephasing� are presented in Fig. 13 for two values of the
fine-structure splitting �fs. If the pulse is long and, therefore,
spectrally narrow, the transition between the two nondegen-
erate states becomes forbidden by energy conservation. As
can be seen, for a typical value of �fs=30 �eV, the effect of
lifting the degeneracy becomes important only for pulse du-
rations of a few tens of picosecond.
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